
gawd: A Differencing Tool for GitHub Actions Workflows
Pooya Rostami Mazrae

pooya.rostamimazrae@umons.ac.be
University of Mons (UMONS)

Mons, Belgium

Alexandre Decan
alexandre.decan@umons.ac.be
F.R.S.-FNRS Research Associate
University of Mons (UMONS)

Mons, Belgium

Tom Mens
tom.mens@umons.ac.be

University of Mons (UMONS)
Mons, Belgium

ABSTRACT
The GitHub social coding platform introduced GitHub Actions as a
way to automate different aspects of collaborative software develop-
ment through the use of workflow files. It is the most popular CI/CD
and workflow automation tool for GitHub. To maintain workflow
code over time, it is useful to rely on differencing tools to identify
the changes made during successive commits. Unfortunately, exist-
ing code differencing tools are not able to correctly identify changes
made to workflow files. We therefore implemented gawd, a syn-
tactic differencing tool for GitHub Actions workflows. The tool is
capable of reporting the addition, deletion, modification and move
of syntactic components in workflow files, taking into account the
specific syntax of workflows. gawd has been evaluated on manually
classified sets of workflow changes taken from existing commits
in 40 different GitHub repositories, and was able to successfully
identify these changes. gawd is publicly released as an open source
Python tool distributed on PyPI.

KEYWORDS
workflow automation, diff tool, software repository mining, GitHub,
software changes, software evolution
ACM Reference Format:
Pooya Rostami Mazrae, Alexandre Decan, and Tom Mens. 2024. gawd: A
Differencing Tool for GitHub Actions Workflows. In 21st International Con-
ference on Mining Software Repositories (MSR ’24), April 15–16, 2024, Lisbon,
Portugal.ACM, NewYork, NY, USA, 5 pages. https://doi.org/10.1145/3643991.
3644873

1 INTRODUCTION
GitHub Actions has become the most popular workflow automation
tool on GitHub [7, 16, 23]. It facilitates the automation of a diverse
set of activities related to software development including testing,
quality analysis, continuous integration, dependency management
and security monitoring. GitHub Actions can initiate these auto-
mated activities in response to specific triggers including commits,
comments, issues, pull requests, and scheduled tasks.

Prior research has focused on changes in CI/CD pipelines based
on Travis [11, 15, 27, 28]. In a similar vein, researchers have started
to explore changes in GitHub Actions workflows [19, 24]. However,
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’24, April 15–16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0587-8/24/04. . . $15.00
https://doi.org/10.1145/3643991.3644873

such workflows still lack a deep understanding on the types of
changes they exhibit, and the frequency of these changes.

The typical way of identifying changes made to code files during
commits is through the use of the git diff tool1 or one of its variants.
When applied to GitHub workflow files, however, the use of such a
tool is hindered by its lack of precision when identifying changes.
More syntax-aware diff tools exist for analysing changes in source
code files for specific programming languages, but we are not aware
of any diff tool that takes the specific YAML-based syntax of GitHub
Actions workflow files into account.

This is whywe have developed gawd, aGitHubActionsWorkflow
Differencing tool. The tool implements a differencing algorithm
that enables the comparison of syntactic workflow differences,
thereby supporting in-depth analysis of GitHub Actions workflow
file changes and how such workflows evolve over time.

After discussing relevant prior research in Section 2, Section 3
provides a motivating example for the relevance of gawd. Section 4
provides installation instructions and implementation details, and
explains how to use gawd in practice. Section 5 evaluates the tool
and its current limitations. Finally, Section 6 concludes the paper.

2 RELATEDWORK
Many differencing tools have been proposed in the past [1, 2, 4, 18,
20, 26], with diff probably being the oldest one [18]. Differencing
tools can be language-specific, like Vdiff for the Verilog hardware
description language [10], or language-agnostic, like LHDiff which
is a hybrid differencing approach for tracking source code lines [3].
Specifically in the context of git and GitHub, the git diff tool is
used [22]. It implements four variants to identify file differences in
commits: the default (and fastest) algorithmMyers [21], minimal,
patience, and histogram. While these tools are essentially line-
based, more advanced differencing tools have been proposed to
take into account the tree-like syntactic structure of code files [8,
9, 12–14, 17]. For example, Gumtree [13] aims to compute edit
operations that are close to original developer intent. To do so,
they represent source code as an abstract syntax tree (AST) to
compute the differences by establishing mappings and deducing
the edit operations. Despite the variety and abundance of such
differencing tools, we are not aware of any such tool having the
ability to comprehensively identify differences between GitHub
Actions workflow files.

Previous studies [6, 7, 25] have emphasized the importance of
understanding how workflow files evolve for uncovering potential
maintenance challenges. Rostami Mazrae et al. [19] studied the evo-
lution of workflow files through an analysis of line-based changes,
ignoring the specific syntactic or semantic nature of these changes.

1https://git-scm.com/docs/git-diff

https://doi.org/10.1145/3643991.3644873
https://doi.org/10.1145/3643991.3644873
https://doi.org/10.1145/3643991.3644873
https://git-scm.com/docs/git-diff

MSR ’24, April 15–16, 2024, Lisbon, Portugal Rostami Mazrae et al.

They studied 271,422 unique workflow file snapshots of 65,067
distinct workflow files, observing that around 10% of all changes
were mostly cosmetic (such as changes to comments, indentation
and pretty printing, and enhancing file readability by adding or
changing labels). The remaining 90% of the changes corresponded
to actual code changes, and were mostly modifications of existing
code lines, or additions of new lines. Line removals were consid-
erably less frequent with only 3.45% of the workflow files having
line removals as their only change and 22.78% of the workflow
files changes including line removals together with other types of
changes.

The primary objective of gawd is to enable a more fine-grained
syntax-based comprehension of the changes that are being made
to GitHub Actions workflow files.

3 MOTIVATING EXAMPLE
Just like any other software artifact, workflow files are susceptible
to change during their lifetime. Neither GitHub’s default diff tool
nor any of git diff algorithms is capable of correctly identifying the
set of changes made to these files in the different commits touching
them. This is illustrated in the example of Figure 1, depicting the
visual diff of the changes made to a workflow file in some commit. 2

Lines 13-14 (and the two preceding unnumbered lines in red)
show a change of job id from linux-x64 to linux-x64-x and a modifi-
cation of the job’s name. Lines 35-36 and 37-38 suggest that a sixth
and seventh step3 have been added to this job, but this is not what
happened in reality. Instead, the step named ‘Build Windows x64
binary’ on lines 55-58 (which is reported by the diff tool as not being
part of any change) has been removed from this job, and added
into a new job with id linux-x64-w (lines 41-58). As a consequence,
the two steps on lines 35-38 have changed their relative position
from 7 and 8, respectively, to 6 and 7, respectively. It is clear that
the diff tool misses out on a lot of syntactic changes by considering
lines 35-54 as a single composite change of 20 consecutive lines
being added, while in fact it should be considered as multiple, more
primitive changes.

Listing 1 provides a condensed summary of what an improved
syntax-aware diff tool should produce for this specific workflow
file changeset. Line 1 corresponds to the change of job id and line 2
represents the change of the job’s name. Line 3 reflects the fact that
the step ‘Build Windows x64 binary’ that used to be at position 6 is
now removed from the job (because it has been inserted as part of a
newly added job on line 6, of which the full contents is not shown
for the sake of brevity). Lines 4 and 5 correspond to the resulting
reordering of the next two steps, that change their relative position
in the job because of the removal of the step on line 3.

4 GAWD
4.1 Installation and execution
gawd has been developed as a standalone Python 3 package with a
command-line interface. gawd reports on the syntactic differences
between two GitHub Actions workflow files. Given two workflow
files, gawd identifies the addition or removal of steps and key-value
2Original commit: https://github.com/d99kris/nchat/commit/
0438344525f6bb36f41c0a145dfe54fad5a3f2c2
3We assume a zero-based indexing for steps.

Figure 1: Visual diff of the changes made to some GHA work-
flow during a commit to a GitHub repository.

Listing 1: Expected output.
1 renamed jobs.linux -x64 to jobs.linux -x64 -x
2 changed jobs.linux -x64.name from "Linux␣Intel␣..." to"..."
3 removed jobs.linux -x64.steps [6]
4 moved jobs.linux -x64.steps [7] to jobs.linux -x64 -x.steps [6]
5 moved jobs.linux -x64.steps [8] to jobs.linux -x64 -x.steps [7]
6 added jobs.linux -x64 -w with "..."

pairs, changes in values associated to a given key, and moves of
steps to a different position within an existing job. gawd is publicly
available on PyPI and can be installed through pip (pip install
gawd), and its source code is available on https://github.com/pooya-
rostami/gawd.

To compute the syntactic diff between two workflow YAML files
file1.yml and file2.yml, one simply needs to run the command
gawd file1.yml file2.yml

The tool can be configured with a range of optional arguments.
For all details, we refer the reader to the tool’s built-in help (i.e.,

https://github.com/d99kris/nchat/commit/0438344525f6bb36f41c0a145dfe54fad5a3f2c2
https://github.com/d99kris/nchat/commit/0438344525f6bb36f41c0a145dfe54fad5a3f2c2
https://github.com/pooya-rostami/gawd
https://github.com/pooya-rostami/gawd

gawd: A Differencing Tool for GitHub Actions Workflows MSR ’24, April 15–16, 2024, Lisbon, Portugal

gawd --help). For example, the following command outputs the
result in JSON format (--json) using a more condensed form
(--short) by not showing the full details of the values associated
to each change, as values can sometimes be very long:
gawd file1.yml file2.yml --json --short

Other optional command-line arguments can be used to change
the default behaviour of the tool: threshold, position_weight and
job_name_weight. threshold can be set between 0 and 1 (by default
it is 0.5) to modify the sensitivity of the tool in identifying changes.
A higher threshold results in more instances of identified changes,
renames or moves, while a lower threshold favors additions and
removals. position_weight specifies a value between 0 and 1 (by
default it is 0.2) that determines the weight assigned to the rel-
ative positions of two items. Increasing this value increases the
importance of the relative position of two items in a sequence (e.g.,
two steps in a job) while decreasing the influence of their content
(dis)similarity. job_name_weight specifies a value between 0 and 1
(by default it is 0.2) that quantifies the significance of differences in
job names when determining the similarity of jobs. A higher value
places greater importance on job name similarity and reduces the
influence of their content (dis)similarity.

4.2 Implementation details
The implementation of gawd relies on a set of functions dedicated to
finding matches, calculating distances and comparing differences.

Finding matches. The two functions find_list_matches and
find_job_matches are dedicated to identifying and computingmatches,
whether they involve items within sequences or jobs. These func-
tions assign distance scores to various item combinations, allowing
for the generation of sorted lists of matches, while considering
positions and job names. In this process, all potential matches are
returned, ordered by distance, but each item is only matched once.
Items whose distance is below the given threshold are categorized
as changed. Other items are categorized as removed or added de-
pending on their presence in the first (old) or second (new) file.

Calculating distances. The dict_distance function computes
a normalized distance between dictionaries, based on common,
changed, added, and removed items. The distance function calcu-
lates distances between objects, accounting for data types such
as simple values, dictionaries (by relying on dict_distance) and
sequences. This comprehensive approach enables a nuanced under-
standing of similarity and difference of two data structures.

Comparing differences. Function diff_workflows takes two
workflow files represented as dictionaries, performs a comparison,
and generates a list of differences. These differences are categorized
into additions, removals, renames, changes, and moves with associ-
ated paths and values from both the old and new workflows. Func-
tion diff_workflow_files operates on two workflow files specified
by their file paths. It reads and converts these files into dictionaries
and calls diff_workflows to provide a list of differences between the
two workflow files.

Figure 2: Real-world example of GitHub’s visual diff of work-
flow changes made in a commit.

5 EVALUATION
5.1 Example
Let us consider a concrete example of a diff between two versions
of a workflow file associated with a specific commit.4 Figure 2
shows the diff as reported by GitHub. In contrast, Figure 3 illus-
trates gawd’s output, presenting the changes in a more fine-grained
and syntax-aware manner. It highlights gawd’s proficiency in rec-
ognizing step movements (in terms of their relative position within
a job) resulting from the addition or deletion (in this case addition)
of steps preceding them in the updated workflow file. Additionally,
the tool successfully captures changes in the values corresponding
to each key within the workflow files. For each such change, the
fully qualified path related to the key is reported. This capacity to

4We used the following commit for this example:
https://github.com/cloud-hypervisor/rust-hypervisor-firmware/
commit/5e2934f2d9cb52c54e696bccc687d52f0ee402f5#diff-
a9b4f1a51dd81dfaef1e9d563dfe6045ab8089a05200453d6e0b2d66201f419f

https://github.com/cloud-hypervisor/rust-hypervisor-firmware/commit/5e2934f2d9cb52c54e696bccc687d52f0ee402f5#diff-a9b4f1a51dd81dfaef1e9d563dfe6045ab8089a05200453d6e0b2d66201f419f
https://github.com/cloud-hypervisor/rust-hypervisor-firmware/commit/5e2934f2d9cb52c54e696bccc687d52f0ee402f5#diff-a9b4f1a51dd81dfaef1e9d563dfe6045ab8089a05200453d6e0b2d66201f419f
https://github.com/cloud-hypervisor/rust-hypervisor-firmware/commit/5e2934f2d9cb52c54e696bccc687d52f0ee402f5#diff-a9b4f1a51dd81dfaef1e9d563dfe6045ab8089a05200453d6e0b2d66201f419f

MSR ’24, April 15–16, 2024, Lisbon, Portugal Rostami Mazrae et al.

added env with {'REGISTRY': 'ghcr.io', 'IMAGE_NAME': '${{ github.repository }}'}
moved jobs.main.steps[6] to jobs.main.steps[7]
moved jobs.main.steps[5] to jobs.main.steps[6]
changed jobs.main.steps[5].with.push from "${{ github.repository == ... }}" to "${{ github.event_name == 'push' }}"
changed jobs.main.steps[5].with.tags from 'rusthypervisorfirmware/dev:latest' to '${{ steps.meta.outputs.tags g}}'
removed jobs.main.steps[4].if with "${{ github.repository == 'cloud-hypervisor/rust-hypervisor-firmware' ... }}"
changed jobs.main.steps[4].name from 'Login to DockerHub' to 'Login to ghcr'
added jobs.main.steps[4].with.registry with '${{ env.REGISTRY }}'
changed jobs.main.steps[4].with.username from '${{ secrets.DOCKERHUB_USERNAME }}' to '${{ github.actor }}'
changed jobs.main.steps[4].with.password from '${{ secrets.DOCKERHUB_TOKEN }}' to '${{ secrets.GITHUB_TOKEN }}'
added jobs.main.steps[5] with {'name': 'Extract metadata (tags, labels) for Docker', 'id': 'meta', ... }

Figure 3: gawd output for the example of Figure 2.

trace changes to the exact location in the workflow’s hierarchical
structure enhances the tool’s utility for software developers and
engineers in effectively interpreting workflow file modifications.

5.2 Validation
We validated the correctness of gawd by manually checking the
tool’s output for real-life cases of workflow file changes made in
existing commits in 40 different GitHub repositories. To do so, we
first used the SEART GitHub search engine [5] to create a dataset
comprising GitHub repositories that (i) are not forks of existing
repositories; (ii) use GitHub Actions and contain at least one work-
flow file in the .github/workflow directory; (ii) have been created
after 2019-01-01 and before 2019-06-01; (iii) have at least 100 stars
and 300 commits; and (iv) have their most recent commit after 2023-
01-01. We randomly selected 40 of these repositories and locally
cloned them on 2023-05-24.

For each of these 40 repositories, we extracted all commits in-
volving changes to GitHub Actions workflow files and randomly
selected one such commit. Using the 40 selected commits we man-
ually checked whether gawd’s output corresponded to our own
interpretation of the changes being made to the workflow. In those
cases where the commit contained changes to multiple workflow
files, we selected the first workflow file.

The manual confirmation of the correctness of the tool’s output
proceeded as follows. Next, all three researchers discussed together
about the interpretation of their changes, in order to come to a
consensus on the actual changes that were being observed in the
workflow files. These changes were then compared against gawd’s
output. The outcome of this comparison revealed that gawd suc-
cessfully identifies all code-related modifications within workflow
files present in our test cases.

We have integrated this manual confirmation of gawd’s output
on 40 cases of workflow file changes as an automated test suite
that is part of gawd’s continuous integration process whenever we
are changing its implementation and creating new versions and
releases.

5.3 Limitations
A limitation of gawd is its inability to properly comprehend com-
posite “semantic” changes such as merging (or conversely splitting)
multiple steps into a single one, moving steps between jobs, replac-
ing a step executing some shell commands (run: key) by a step

using a reusable Action (uses: key) and vice versa. Similarly, gawd
ignores changes to comments, or cosmetic changes such as the
addition or removal of empty lines, whitespaces or indentations
that do not affect the workflow syntax.

In future endeavors, we plan to enhance gawd’s functionality by
implementing a three-way diff feature, facilitating improved merg-
ing of workflow files within repositories. We also aim to provide a
visualization to allow users to identify the reported changesets in
a familiar way, as in traditional line-based diff tools. Furthermore,
similar to the Unix patch tool, we plan to create a tool taking as
input some changes generated by gawd and to apply them to similar
workflow files. We also plan to make gawd aware of the various
programming languages that can be used in workflow files (e.g.,
shell commands or Python scripts in run:) when computing the
distance between values.

6 CONCLUSION
This paper presented gawd, a differencing tool designed to report
syntactic changes between pairs of GitHub Actions workflow files.
The tool was implemented as an open source Python library with
a command-line interface. We manually checked the accuracy of
gawd on 40 different commits involving workflow file modifications,
representing real-life scenarios involving the addition, removal,
modification and move of workflow code fragments.

We plan to utilize gawd as a basis for carrying out large-scale em-
pirical quantitative analyses of GitHub Actions workflow evolution,
focusing on changes in the configuration, execution, quality-related
and security-related aspects of workflow code. Through such analy-
sis we aim to get insight in, and provide support for, the challenges
encountered by workflow maintainers. For example, identifying
frequent changes could lead to a system for recommending changes
or automating refactorings.

ACKNOWLEDGMENTS
This work is supported by research project ARC-21/25 UMONS3
Action de Recherche Concertée financée par le Ministère de la
Communauté française - Direction générale de l’Enseignement non
obligatoire et de la Recherche scientifique, and F.R.S.-FNRS under
grant numbers J.0147.24, T.0149.22 and F.4515.23.

gawd: A Differencing Tool for GitHub Actions Workflows MSR ’24, April 15–16, 2024, Lisbon, Portugal

REFERENCES
[1] Raihan Al-Ekram, Archana Adma, and Olga Baysal. 2005. diffX: an algorithm to

detect changes in multi-version XML documents. In Conference of the Centre for
Advanced Studies on Collaborative research. Citeseer, 1–11.

[2] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. 2004. A
differencing algorithm for object-oriented programs. In International Conference
on Automated Software Engineering (ASE). IEEE, 2–13.

[3] MuhammadAsaduzzaman, Chanchal K Roy, Kevin A Schneider, andMassimiliano
Di Penta. 2013. Lhdiff: A language-independent hybrid approach for tracking
source code lines. In International Conference on Software Maintenance (ICSM).
IEEE, 230–239.

[4] Sudarshan S Chawathe, Anand Rajaraman, Hector Garcia-Molina, and Jennifer
Widom. 1996. Change detection in hierarchically structured information. ACM
SIGMOD Record 25, 2 (1996), 493–504.

[5] Ozren Dabic, Emad Aghajani, and Gabriele Bavota. 2021. Sampling projects in
GitHub for MSR studies. In International Conference on Mining Software Reposito-
ries.

[6] Alexandre Decan, Tom Mens, and Hassan Onsori Delicheh. 2023. On the outdat-
edness of workflows in the GitHub Actions ecosystem. Journal of Systems and
Software 206 (2023), 111827.

[7] Alexandre Decan, Tom Mens, Pooya Rostami Mazrae, and Mehdi Golzadeh. 2022.
On the Use of GitHub Actions in Software Development Repositories. In Int’l
Conf. Software Maintenance and Evolution.

[8] Sep Dehpour. [n. d.]. DeepDiff. https://github.com/seperman/deepdiff
[9] Georg Dotzler and Michael Philippsen. 2016. Move-optimized source code tree

differencing. In International Conference on Automated Software Engineering (ASE).
660–671.

[10] Adam Duley, Chris Spandikow, and Miryung Kim. 2012. Vdiff: a program differ-
encing algorithm for Verilog hardware description language. Automated Software
Engineering 19, 4 (2012), 459–490.

[11] Thomas Durieux, Rui Abreu, Martin Monperrus, Tegawendé F Bissyandé, and
Luís Cruz. 2019. An analysis of 35+million jobs of Travis CI. In Int’l Conf. Software
Maintenance and Evolution (ICSME).

[12] Fatih Erikli. [n. d.]. dictdiffer. https://github.com/inveniosoftware/dictdiffer
[13] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Mar-

tin Monperrus. 2014. Fine-grained and accurate source code differencing. In
International Conference on Automated Software Engineering (ASE). 313–324.
https://doi.org/10.1145/2642937.2642982

[14] Veit Frick. 2020. Understanding software changes: Extracting, classifying, and
presenting fine-grained source code changes. In International Conference on
Software Engineering: Companion Proceedings. 226–229.

[15] Keheliya Gallaba and Shane McIntosh. 2018. Use and misuse of continuous
integration features: An empirical study of projects that (mis) use Travis CI.
Trans. Software Engineering 46, 1 (2018).

[16] Mehdi Golzadeh, Alexandre Decan, and TomMens. 2022. On the rise and fall of CI
services in GitHub. In Int’l Conf. Software Analysis, Evolution and Reengineering
(SANER).

[17] Kaifeng Huang, Bihuan Chen, Xin Peng, Daihong Zhou, Ying Wang, Yang Liu,
and Wenyun Zhao. 2018. Cldiff: generating concise linked code differences. In
International Conference on Automated Software Engineering (ASE). 679–690.

[18] James W. Hunt and M. Douglas McIlroy. 1976. An Algorithm for Differential File
Comparison. Technical Report 41. Computing Science Technical Report, Bell
Laboratories.

[19] Pooya RostamiMazrae, Alexandre Decan, TomMens, andMairieliWessel. 2023. A
Preliminary Study of GitHub ActionsWorkflow Changes. In Seminar on Advanced
Techniques and Tools for Software Evolution (SATToSE), Vol. 3483. CEURWorkshop
Proceedings.

[20] Webb Miller and Eugene W. Myers. 1985. A file comparison program. Software:
Practice and Experience 15, 11 (1985), 1025–1040.

[21] Eugene W. Myers. 1986. An O(ND) difference algorithm and its variations.
Algorithmica 1, 1-4 (1986), 251–266.

[22] Yusuf Sulistyo Nugroho, Hideaki Hata, and Kenichi Matsumoto. 2020. How
different are different diff algorithms in Git? Use–histogram for code changes.
Empirical Software Engineering 25 (2020), 790–823.

[23] Pooya Rostami Mazrae, Tom Mens, Mehdi Golzadeh, and Alexandre Decan. 2023.
On the usage, co-usage and migration of CI/CD tools: A qualitative analysis.
Empirical Software Engineering 28, 2 (2023), 52.

[24] Pablo Valenzuela-Toledo and Alexandre Bergel. 2022. Evolution of GitHub Action
Workflows. In Int’l Conf. Software Analysis, Evolution and Reengineering (SANER).
IEEE, 123–127.

[25] Mairieli Wessel, Tom Mens, Alexandre Decan, and Pooya Rostami Mazrae. 2023.
The GitHub DevelopmentWorkflowAutomation Ecosystems. Springer International
Publishing, Cham, 183–214. https://doi.org/10.1007/978-3-031-36060-2_8

[26] Zhenchang Xing and Eleni Stroulia. 2005. UMLDiff: an algorithm for object-
oriented design differencing. In International Conference on Automated Software
Engineering (ASE). 54–65.

[27] Fiorella Zampetti, Salvatore Geremia, Gabriele Bavota, andMassimiliano Di Penta.
2021. CI/CD pipelines evolution and restructuring: A qualitative and quantitative
study. In Int’l Conf. Software Maintenance and Evolution (ICSME). IEEE.

[28] Fiorella Zampetti, Carmine Vassallo, Sebastiano Panichella, Gerardo Canfora,
Harald Gall, and Massimiliano Di Penta. 2020. An empirical characterization of
bad practices in continuous integration. Emp. Soft. Eng. 25 (2020).

https://github.com/seperman/deepdiff
https://github.com/inveniosoftware/dictdiffer
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1007/978-3-031-36060-2_8

	Abstract
	1 Introduction
	2 Related Work
	3 Motivating Example
	4 GAWD
	4.1 Installation and execution
	4.2 Implementation details

	5 Evaluation
	5.1 Example
	5.2 Validation
	5.3 Limitations

	6 Conclusion
	Acknowledgments
	References

